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Abstract

This paper is motivated by mitigation of oscillation of the stays in cable-stayed bridges in which
transverse elements (cross-ties) are placed among different stays. The dynamic behavior of a simplified
cable network, composed by a set of interconnected truss elements, has been investigated analytically.
Solutions to the free-vibration problem have been computed by means of a general analytical procedure.
Several special cases have been defined and solved in closed form, revealing interesting characteristics.
These examples have been investigated in detail as a background for understanding more complex systems.
It is worth noting that even for a relatively modest number of interconnected elements, considerable
complexity, which demands a numerical solution technique, is often present. The approach presented
herein will be applied to more general configurations and bridge application examples in a companion
paper.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of large-amplitude vibrations on a system of stays on a cable-stayed bridge is a
topic that is currently interesting many researchers. One of the methods that is sometimes adopted
to counteract the undesired oscillations, usually induced by a combination of wind loads or wind-
rain effects [1,2] is to increase the in-plane stiffness of stays by connecting them together by means
of a set of transverse cables, defined as cross-ties (or ‘‘aiguilles’’). According to Ref. [3], these
cables are also used to reduce the cable sag variations among the stays of different length,
ensuring a more uniform axial stiffness on the consecutive stays. From the dynamic perspective,
the properties of the single cable, considered as a separate element, are modified by the presence of
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the lateral constraints that influence its oscillation characteristics. Similarly, a connection of
simple suspended elements is transformed into a more complex cable network; a closed-form
solution to the dynamic problem is more elusive.
The literature contains examples of performance improvement for a vibrating cable;

for example, the widely studied case of adding a transverse damper [4]. However, it is evident
that detailed studies of cross-ties and interconnected cable systems are not well reported and
most of the recommendations that are currently followed seem to be linked to practice or
previous experience. A fundamental study to support these problems seems therefore necessary.
It is worth mentioning that a cable network can be a very complex system and finite element
analysis has been preferred in the past. An example was given by Ehsan and Scanlan [5],
who used component-mode synthesis and finite element approaches for the solution of a
three-dimensional cable problem. Reviews of cable vibration that address the most commonly
used techniques for reducing motion amplitudes also identify this problem as one that still needs
to be investigated [6].
Experience gained in the field of transverse restrainers was analyzed by Virlogeux [7] who points

out recent failures or unexpected behavior of the cross-ties (Pont de Normandie, Foro Bridge in
Denmark). He addressed the issues of transverse cable stiffness, tension and internal damping. He
also suggests that simplified approaches (equivalent static analyses) can be sometimes efficient in
terms of design recommendations.
Yamaguchi and Jayawardena [8] and Yamaguchi and Nagahawatta [9] analyzed the problem

through a set of experiments conducted on a model of two interconnected cables, and a
subsequent finite element simulation of the configuration. An energy approach for the
determination of the damping contribution linked to the complex network was used. Among
their comments, it is interesting to emphasize that the contribution to damping, due to cross-ties,
can be negative or positive, depending on the chosen system and cable characteristics and that not
only the overall stiffer configuration must be considered but also the possibility of exploiting the
energy dissipation potential of the restrainers.
Several examples of vibration analysis of cable nets were found in the literature, even though

most of them are related to high-tension systems, in which the excitation force is mainly
orthogonal to the net configuration (i.e., membrane behavior—e.g., Ref. [10]). In most cases a
finite element analysis was performed. An interesting approach for the out-of-plane vibration
analysis of a non-linear cable system was applied by Mesarovic and Gasparini [11] to the study of
a complex truss.
The contribution of the present paper is focused on the development of an analytical method

and efficient numerical procedure that models the in-plane behavior of a set of interconnected
cables. Observations on the behavior of these cross-tied systems are investigated through the
detailed study of specific examples.

2. General problem formulation

Since few relevant examples of in-plane cable network free-vibration analysis were found in the
literature in which the problem is also treated in closed form, an analytical study was considered
useful for the elaboration and understanding of the more complex system performance. The goal
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of this investigation was to better understand the basic mechanics of the phenomenon, when an
interaction among independent cable elements is effected by the presence of cross-connections
(rigid or non-rigid).
The basic problem analyzed in this work is founded on the behavioral assumption of a highly

pre-stressed set of cables, compared to their mass and elastic stiffness, so that the assumption of
the taut flat cable can be considered reasonable. The use of this theory [12] also allows for a
simplification of dynamic equations: each cable can be considered as extensible, but the stretch
exerted to resist the external applied load is of second order in the additional deflection. This
implies the absence of dynamic additional tension with respect to the static analysis in the case of
the free-oscillation investigation [12]. It is clear that these simplifications can lead to an
approximation of a real system; however recent papers, for example by Main and Jones [4], have
suggested that a similar approach for the solution of a damped taut cable is reasonable in the
context of stay-cable vibration mitigation in bridges.
The initial problem formulation is depicted in Fig. 1. The example shows a simplified network,

defined by a set of two taut cables, connected by means of a vertical rigid rod (to be relaxed later).
The generic jth cable is divided into m segments, each of which is labeled as p (the generic element
is denoted by j; p). The jth cable is restrained at both ends; it is characterized by a length Lj; with
L1 > L2 in this case, tension Hj and mass per unit length mj: The horizontal offset between the two
cables has been denoted by l1 and the position of the vertical connection, with respect to the right-
hand side of cable ‘‘2’’ has been assumed equal to l2 (segment 2,1). The quantity l� ¼ l1 þ l2
represents the same dimension in the coordinate system of the upper cable. The xjp along-axis
coordinate of the pth segment of the jth cable has been taken in accordance with Fig. 1. Vertical
displacements are considered positive downwards. The position of the vertical connector relative
to the cable is general, and the only additional physical constraints are expressed by L2pL1;
l2pL2; l1 þ L2pL1: A primary nomenclature is used in this section for the description of general
approach; a secondary and simplified notation (in parentheses) is also indicated and will be used
in Sections 3 and 4.
The solution to the free-vibration problem is concerned with a system of four partial

differential equations, corresponding to the four cable branches yjpðxjp; tÞ; with j ¼ 1; 2 and
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p ¼ 1; 2; where t denotes the time variable:

Hj

@2yjp

@x2
jp

¼ mj

@2yjp

@t2
; ð1Þ

where j ¼ 1;y; n is the number of cables and p ¼ 1;y;m the number of segments, for each
cable.
This system requires eight boundary, compatibility and equilibrium conditions, which can be

expressed in terms of (1) displacements at cable ends; (2) displacement continuity at point P1
between elements ‘‘1,1’’ and ‘‘1,2’’, and at P2 for segments ‘‘2,1’’ and ‘‘2,2’’; (3) equality of
displacement at each time instant at P1 and P2 between the two cables; (4) force equilibrium at the
vertical rod. These can be written as

yjpðxjp ¼ 0; tÞ ¼ 0 for j ¼ 1; 2 and p ¼ 1; 2; ð2aÞ

y11ðx11 ¼ l�; tÞ ¼ y12ðx12 ¼ L1 � l�; tÞ; y21ðx21 ¼ l2; tÞ ¼ y22ðx22 ¼ L2 � l2; tÞ; ð2bÞ

y11ðx1 ¼ l�; tÞ ¼ y21ðx3 ¼ l2; tÞ; ð2cÞ

H1
@y11

@x11

����
x1¼l�

þ
@y12

@x12

����
x2¼L1�l�

 !
þ H2

@y21

@x21

����
x3¼l2

þ
@y22

@x22

����
x4¼L2�l2

 !
¼ 0: ð2dÞ

A purely oscillatory motion of each cable element can be developed using the Bernoulli–
Fourier method in which time-dependent and spatial-co-ordinate effects can be separated as
yjpðxjp; tÞ ¼ YjpðxjpÞeiot; where o is the natural circular frequency of vibration of the coupled
network (unknown). Eqs. (1) can be therefore reduced to a system of ordinary equations:

Hj

d2Yjp

dx2
jp

þ mjo
2Yjp ¼ 0 ðj ¼ 1; 2; p ¼ 1; 2Þ: ð3Þ

From Eq. (3) and conditions (2a) the solution can be proposed of the form

Y11;12ðx11;12Þ ¼ A11;12 sin
ap
L1

x11;12

� �
; Y21;22ðx21;22Þ ¼ A21;22 sin

af p
L1

x21;22

� �
: ð4a;bÞ

In Eqs. (4) the upper cable is considered as reference element; a represents the reduced
frequency of the system, and f is a parameter that takes into account geometrical and stiffness
differences of cable ‘‘2’’ with respect to ‘‘1’’, defined as scaled frequency ratio. From Eqs. (3) such
quantities can be redefined according to

o ¼ a
p

L1

H1

m1

� �1=2

¼ ao01; f ¼
H1

H2

� �1=2 m2
m1

� �1=2

¼
o01

o02

L1

L2
: ð5Þ

In these equations o01 and o02 are the fundamental circular frequencies of the unconnected
cables. Eqs. (4a) and (4b) generally satisfy the requirements of system (3). The unknown
parameters Ajp; representing the four modal amplitudes of each pth segment, must be solved from
the four boundary conditions (2b–2d). In this way the solution to the free-oscillation problem,
and the determination of the natural frequencies in terms of a; can be transformed into a system
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of four algebraic equations, linked to (2b–2d), in matrix form

SA ¼ 0; A ¼ ½A11 A12 A21 A22�T; ð6a;bÞ

S ¼

sinðapx1Þ �sin½apð1� x1Þ� 0 0

0 0 sinðapDxÞ �sin af p
L2

L1
� Dx

� �� �
sinðapx1Þ 0 �sinðaf pDxÞ 0

cosðapx1Þ cos½apð1� x1Þ�
f

h
cosðaf pDxÞ

f

h
cos af p

L2

L1
� Dx

� �� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ð6cÞ

where all quantities have been reduced into the following dimensionless parameters: h ¼ H1=H2;
x1 ¼ l�=L1; x2 ¼ l1=L1; Dx ¼ l2=L1 ¼ ðx1 � x2Þ: The infinite set of non-trivial solutions ðAa0Þ to
the homogeneous system (6a) can be identified through the condition det½S� ¼ 0: This condition is
given by the roots of the following polynomial pðaÞ:

pðaÞ ¼ sinðapÞ cos af p 2Dx�
L2

L1

� �� �
� cos af p

L2

L1

� �� �

þ
h

f
sin af p

L2

L1

� �
fcosð2apx1 � apÞ � cosðapÞg: ð7Þ

Eq. (7) represents the frequency equation that relates the general solution to a specific value of
the system reduced frequency a; for which the modal amplitudes of the rth segment can be
obtained through the linearly independent equations (6). The roots of Eq. (7) cannot be found
analytically in closed form for the general case, since little further simplification is possible; a
numerical technique can be adopted in this general case. Prior to the implementation of this
general approach, however, the study of some sample cases, in which the trigonometric
expressions could be simplified, was performed. A collection of relevant examples was
constructed, both to identify the physical behavior and to reveal any interesting characteristics.
These are: (1) study of a perfectly symmetric cable system with equal cable elements and locations
(twin-cable system) and rigid connection at mid-span; (2) study of a perfectly symmetric cable
system with equal cable elements and locations (twin-cable system) and with variable position of
the rigid connection; (3) study of a symmetric cable system, in which cable elements have different
length but equal mass and tension characteristics and rigid connection at mid-span; (4) same as
case (1) but with a non-rigid connection at mid-span (linear spring model); (5) same as case (3) but
with a non-rigid connection at mid-span (linear spring model); (6) same as case (5) with an
additional extension to ground.
A further extension of the theory will be developed later, in the context of examples 4–6.

Examples 1–3 are discussed in Section 3, examples 4–5 in Section 4 and example 6 in Section 5.

3. Rigid connectors

In this section two-cable systems connected by a rigid secondary restrainer were analyzed. Since
the number of segments involved is reduced, a modification to the initial convention is introduced
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to simplify the notation in Eqs. (4) and (6). Following the secondary nomenclature in Fig. 1, four
cable elements are defined (through r ¼ 1;2,3,4) and the co-ordinates and parameters that belong
to each of them are assumed as Y1y4; x1y4; A ¼ ½A1 A2 A3 A4�T:

3.1. Twin-cable system with rigid connection at mid-span

In a perfectly symmetric system the natural frequencies of the isolated cables, 1 and 2, are
coincident: o01 ¼ o02 (H1 ¼ H2 ¼ H; m1 ¼ m2 ¼ m; L1 ¼ L2 ¼ L). The reduced frequencies of
the individual cable, aSA; are equal to the infinite sequence of natural numbers ð1;y;NÞ; being the
even values corresponding to the symmetric modes and the odd ones to the antisymmetric
components [12]. Since l2 ¼ l� ¼ L=2 and l1 ¼ 0 the dimensionless quantities become f ¼ h ¼ 1;
x1 ¼ 1=2; x2 ¼ 0; Dx ¼ x1: The matrix (6c) can be reduced to the form

S ¼

sin b �sin b 0 0

0 0 sin b �sin b

sin b 0 �sin b 0

cos b cos b cos b cos b

8>>><
>>>:

9>>>=
>>>;

with b ¼
ap
2
: ð8Þ

The characteristic polynomial (7) can be rewritten as

pðaÞ ¼ fsinðapÞgfcosðapÞ � 1g: ð9Þ

In solving Eq. (9) two sets of solution can be detected, each of which is related to the vanishing
of the quantities in brackets. The first branch, connected to the sine expression, represents
the same frequencies as the individual-cable case, aSA; as expected aSA ¼ k; with k ¼ 1; 2;y;N:
The second set is linked to the even-valued solutions of the first series, corresponding to
antisymmetric modes of the single cable: in this case a new configuration with the same frequency
can be detected.
In particular, from the analysis of Eq. (8) it can be seen that when the reduced frequency is the

set of odd numbers, the fourth equation degenerates to the null identity; the modal amplitudes of
each rth segment are the same (in-phase motion), corresponding to the symmetric modes of the
single cable. No force is exerted by the vertical connection, since the derivatives of Eqs. (4a) and
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(4b) vanish at mid-span. The general pattern of these modes is represented in Fig. 2 for k ¼ 1
(1st symmetric mode, Fig. 2(a), k ¼ 3 (3rd symmetric mode, Fig. 2(b)); the vector of normalized
modal amplitudes is equal to A ¼ 0:5½1 1 1 1�T:
When a is even the first three rows in Eq. (8) are identically zero and the solution to the linearly

dependent system (6a) can be obtained through the fourth equation with now three unknowns
(one of the amplitudes assumed equal to the unit value), corresponding to a root with multiplicity 3.
With the modal frequency the same, three independent modal solutions can be found:

* AAS�I ¼ 0:5½1 � 1 1 � 1�T; antisymmetric modes with in-phase motion between upper and
lower cables (a ¼ 2k; with k ¼ 1; 2;y;N)—Fig. 3(a),

* AAS�II ¼ 0:5½1 � 1 � 1 1�T; antisymmetric modes with the two cables (upper and lower) out
of phase (a ¼ 2k; with k ¼ 1; 2;y;N)—Fig. 3(a);

* AS ¼ 0:5½1 1 � 1 � 1�T; symmetric modes (also corresponding to the first set of solutions), in
which the two cables are out of phase (a ¼ 2k; with k ¼ 1; 2;y;N)—Fig. 3(b).

For the two antisymmetric solutions (AS-I and AS-II; Fig. 3(a), the position of P1 and P2 nodes
is unmodified during the oscillation and no force is transferred through the restrainer.
The modal behavior of AS in Fig. 3(b) can also be interpreted as ‘‘pseudo-symmetric’’, due to

the discontinuity at nodes P1 and P2 (lying on the horizontal axis); in this case, an internal force
proportional to 2AS;1 cosðap=2Þ; with AS;1 modal amplitude of the single cable segment (the same
on each element), is present.
The orthogonality among different modes is trivially verified; the three eigenvectors associated

with the multiple root form a basis of the space of the solutions, i.e., their linear combination also
represents a possible modal form. For example ½1 � 1 0 0�T; given by ðAAS�I þ AAS�II Þ;
corresponds to an eigenfunction in which the lower cable is at rest and ½1 0 0 � 1�T ¼
ðAAS�I þ ASÞ to a mode in which two opposite cross-segments are only responding out of phase.

3.2. Twin-cable system with arbitrary location of the rigid connection

The twin-cable configuration, analyzed in Section 3.1, was extended to the case of an arbitrary
location of the rigid restrainer, i.e., by considering Dx ¼ x1; with 0px1p1: Matrix (6c) can be
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reduced to the form

S ¼

sinðapx1Þ �sin½apð1� x1Þ� 0 0

0 0 sinðapx1Þ �sin½apð1� x1Þ�

sinðapx1Þ 0 �sinðapx1Þ 0

cosðapx1Þ cos½apð1� x1Þ� cosðapx1Þ cos½apð1� x1Þ�

8>>><
>>>:

9>>>=
>>>;
; ð10Þ

and the characteristic polynomial (7) can be written as

pðaÞ ¼ fsinðapÞgf2½cosð2apx1 � apÞ � cosðapÞ�g: ð11Þ

Two sets of solutions can be detected from Eq. (11), each one of which is related to the
vanishing of the quantities in brackets.
The first set (labeled as ‘‘S-A’’), is connected to the condition sinðapÞ ¼ 0; similarly to Section 3.1,

with reduced frequency a ¼ k ðk ¼ 1; 2;y;NÞ; equivalent to the isolated-cable case. The odd
values of the roots of ‘‘S-A’’ (a ¼ k; with k ¼ 1; 3; 5;y) correspond to a set of symmetric modes.
In system (10) the fourth equation is reduced to a null identity and therefore, the normalized
modal amplitudes (in-phase motion) are A ¼ 0:5½1 1 1 1�T: The even values of this set (a ¼ k;
with k ¼ 2; 4; 6;y) are coincident with the antisymmetric solution of Section 3.1 with in phase
contributions from both cables (no multiplicity due to spatial non-symmetry) and no force
transferred through the restrainer. The reduction of rank to one for antisymmetric modes is not
possible, unless x1 is assumed such that sinðapx1Þ ¼ 0; for a ¼ 2k (with k ¼ 1; 2;y;N). This
configuration occurs for ‘‘even-valued’’ ða ¼ 2kÞ higher modes, when ax1p ¼ jp (j ¼ 1; 2; 3;y;N
and 0px1p1), i.e., for a given a; when

x1;jðaÞ ¼
j

a
with jA 1;y;N;

j

a
o1

� �
: ð12Þ

This corresponds, as an example, to the locations x1 ¼ 1=4; 1=2; 3=4; for a ¼ 4: It is clear that,
when the position of the strut is coincident with the nodes of a particular modal configuration of
the individual cable, a multiple solution (in-phase and out-of-phase antisymmetric) reappears for
that frequency.
The second set (‘‘S-B’’), associated with ½cosð2apx1 � apÞ � cosðapÞ� ¼ 0; generate two subsets

of pseudo-symmetric modes, defined as (primary) pseudo-symmetric (PS) and (complementary)
pseudo-symmetric (CPS); frequencies and modal normalized amplitudes are respectively defined
by the formulae

aPS ¼
k

1� x1
with k ¼ 1; 2;y;N; APS ¼ 0:71½0 1 0 � 1�T; ð13a;bÞ

aCPS ¼
k

x1
; with k ¼ 1; 2;y;N; ACPS ¼ 0:71½1 0 � 1 0�T: ð14a;bÞ

In both cases the rank of S is reduced by one: the modal forms are both characterized by zero
amplitude on two opposite segments of the twin-cable system, and two remaining symmetric
components (out of phase). For a given k; the wavelengths of Eq. (13) are longer than those of
Eq. (14), being a associated with a lower frequency. In Figs. 4(a) and (b) the eigenfunctions
associated with Eqs. (13) and (14), respectively, are depicted for k ¼ 1 and x1 ¼ 0:35: A similar
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property, as in Eq. (12), can be shown for higher modes and Eqs. (13) for CPS modes, for selected
values of x1; i.e., when a triple-multiplicity solution is recovered.
Fig. 5 summarizes the reduced frequency evolution of all different modal forms, as a function of

x1 (symmetric, ‘‘S’’; antisymmetric, ‘‘AS’’; pseudo-symmetric, ‘‘PS’’ and ‘‘CPS’’), for the
fundamental modes of the twin-cable system. The symmetry of functions (13a) and (14a) with
respect to the centerline is evident. Two types of intersections can be seen; those points denoted by
‘‘a’’ represent the convergence of three modal frequencies to a unique value (pseudo-symmetric—
primary and complementary; antisymmetric), i.e., a triple-multiplicity solution for x1 ¼ 1=2; as
presented in Section 3.1.
The second class of points (‘‘b’’) are given by the coexistence between a lower order

complementary pseudo-symmetric mode, a higher order pseudo-symmetric, and a symmetric
mode (Fig. 6(a)). In this case, it is possible to define

u ¼
kCPS

kPS

¼
x1

1� x1
o1; ð15Þ
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where kPS and kCPS are the integer positive values assumed in Eqs. (13a) and (14a), respectively.
For example, for u ¼ 0:5; Eq. (14) defines the location at L=3; for which the frequencies of
both primary mode (2 wavelengths kPS ¼ 2) and complementary mode ðkCPS ¼ 1Þ are coincident
with the third symmetric mode (wavelength L/3). The geometry of the three modal configurations
is modified (the rank of Eq. (10) is reduced to 1), and a complex behavior similar to the symmetric
case with x1 ¼ 1=2 can be observed. The difference between points of class ‘‘a’’ and ‘‘b’’ is that,
while in the first case all points are representative of the same behavior occurring at each
‘‘antisymmetric’’ modal frequency a (x1 ¼ 1=2), in the second case there is only one frequency
(and the family of its multiples) that, for a given location of the bar, satisfies equality (15).
From Fig. 5 it can be seen how the position of the vertical connector significantly affects

the system behavior. In particular, while frequencies of symmetric and antisymmetric modes
are unmodified, those of PS and CPS modes can change dramatically if the former is moved from
the centerline toward the edges. For values of x1 close to 0.5 the frequency of PS and CPS are
almost coincident and close to the antisymmetric value, from which this modal bifurcation is
originated. Half of the cable is practically at rest. On the contrary, as x1 approaches the lateral
restraints, the frequency of the CPS is ‘‘projected’’ towards higher values and the possibility of
switching from PS to CPS when a slight variation of a driving force is exerted disappears. This
fact also suggests that the response of a non-perfectly symmetric system can be significantly
modified by the external geometry, along with the presence of perhaps unexpected modal
characteristics. Moreover, regions of multiple solutions seem to suggest a rapid rise of complexity
in the analyses.

3.3. Symmetric-cable system with L2aL1 and rigid connection at mid-span

Two taut strings with different length but symmetrically located with respect to their center-line
are coupled together by means of a secondary cable located at mid span. In particular, it was
assumed: H1 ¼ H2 ¼ H; m1 ¼ m2 ¼ m; L2pL1; h ¼ 1; l� ¼ L1=2; l2 ¼ L2=2; and o02 ¼ ð1þ eÞo01

with eX0:
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The reduced frequencies of the upper reference cable aj;1; are equal to the infinite series of
natural numbers ð1; 2;y; j;y;NÞ; those of the secondary one can be referred to the first set by the
ratio oj;2=oj;1 ¼ ð1þ eÞ: The secondary notation (Fig. 1) was used in this example, in order to
simplify the final equation system and avoid the dependence of l1; l2; etc. The modified expressions
for Y1;y;4 and A1;y;4 are described through the expressions

Y1;2ðx1;2Þ ¼ A1;2 sin
ap
L

x1;2

� �
; Y3;4ðx3;4Þ ¼ A3;4 sin

af p
L2

x3;4

� �
; ð16a;bÞ

where L1 ¼ L for simplicity (note the coordinate normalization in Eq. (16b). Quantities (16a) and
(16b) are still a solution to the general problem (3), provided that the frequency of the system o is
such that

o ¼ a
p
L

H

m

� �0:5

¼ ao01; f ¼ L2=L ¼ 1=ð1þ eÞ: ð17a;bÞ

The quantity f (17b) represents the ratio between cable lengths and is a function of e: By
substituting Eqs. (16) and (17) into Eq. (3) and recalling the boundary conditions (2), the system
matrix S can be written in the form

S ¼

sin b �sin b 0 0

0 0 sinðf bÞ �sinðf bÞ

sin b 0 �sinðf bÞ 0

cos b cos b cosðf bÞ cosðf bÞ

8>>><
>>>:

9>>>=
>>>;

with b ¼
ap
2
: ð18Þ

Similarly, the characteristic polynomial, associated with det½S� ¼ 0; can be reduced to

pðaÞ ¼ sin
apð1þ f Þ

2

� �� �
2 cos

apð1þ f Þ
2

� �
� cos

apð1� f Þ
2

� �� �� �
: ð19Þ

Eq. (19) has two main sets of roots, each one of which is related to the quantities in brackets.
The first one (‘‘S-A’’), related to the sine expression—left part of Eq. (19), is connected to the
set of in-phase symmetric modes. In this case the eigenvalue–eigenvector solution is modified by
the presence of the shorter cable: the possibility of a perfectly ‘‘tuned’’ solution for e > 0 (as in
Figs. 3(a) and (b) is impossible and the reduced frequencies increase according to the relationship

aS ¼ 2k
1

1þ f
¼ 2k

1þ e
1� e

with k ¼ 1; 2;y;N; ð20aÞ

AS ¼
0:5½1 1 1 1�T for k odd ðin phaseÞ;

0:5½1 1 � 1 � 1�T for k even ðout of phaseÞ:

(
ð20bÞ

These values of a ensure the symmetry of modes and the requirement of equilibrium at P1 and
P2 (a force is transferred through the rigid connector). At these points a discontinuity in the
derivative is necessary between the consecutive segments of the same cable, which must have
opposite sign on the two sides.
The perfect equality (in modulus) of modal amplitudes can be similarly proved, which is

responsible for the in-phase and out-of-phase eigenvector components (20b).
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The second set of roots (‘‘S-B’’), related to the cosine expression, can be divided in two subsets.
The first one ðIÞ is the solution that corresponds to the antisymmetric mode of the upper cable,
with frequency and amplitudes expressed by the expressions

aAS;I ¼ 2k with k ¼ 1; 2;y;N; AAS;I ¼ 0:71½1 � 1 0 0�T: ð21a;bÞ

For the equilibrium and the continuity at nodes P1 and P2 (18), the shorter cable must be at
rest.
The second family of modes ðIIÞ is given by

aAS;II ¼
2k

f
¼ 2kð1þ eÞ with k ¼ 1; 2;y;N; AAS;II ¼ 0:71½0 0 1 � 1�T: ð22a;bÞ

In both cases (21) and (22) the rank of S is 3 and no force is transmitted through the restrainer.
A further reduction of rank for antisymmetric modes is not possible, unless e is such that
sin½kpð1þ eÞ� ¼ 0 (continuity at mid-span for Eq. (20a)), for a given k: This possibility can occur
at higher modes, when the ratio between the two cables, f ; is equal to the wavelength of a
particular mode (note the similarity with Eq. (15)) and the convergence of three modal frequencies
is attained (rank½S� ¼ 1).
All the modal frequencies are summarized in Fig. 6, as a function of the cable length ratio, f :

Some characteristic eigenfunctions are also included. The modes are divided in symmetric (20)
and antisymmetric (21,22) modes. For the former, in-phase and out-of-phase patterns of opposite
cables are indicated. Nodes labelled as ‘‘b’’ are associated with the coexistence of more than one
modal form (as an example, two of the possible solutions for f ¼ 0:5 and a ¼ 1=3 are indicated).
Nodes denoted by ‘‘a’’ are related to the antisymmetric/symmetric multiple modal form
(multiplicity 3) for f ¼ 1 (twin-cable systems); as f differs from the unitary value, the bifurcation
among the three sets is evident (20–22). The relative increment of a; particularly for antisymmetric
modes (22) and higher symmetric solutions, is strongly influenced by the reduction of length in the
lower cable; as an example, for f in the range of 0.5–0.7, this class of modes tends to rapidly
evolve to higher order.

4. Flexible connectors

The symmetric examples analyzed in Sections 3.1 and 3.2 were extended to the case of a non-
rigid secondary restrainer. The new configuration is shown in Fig. 7. A linear spring of stiffness K
was inserted between the center-lines of the two cables, allowing for a relative displacement
between points P1 and P2 on the two cables, dP1P2

; simulating perhaps more realistically the
behavior of a cross-tie. In Fig. 7, an additional extension to ground of the connector is also
considered, with KGaK to allow for a generalized characterization of the problem (see Section 5).
The boundary conditions (2d) and (2e) need to be modified to take into account the presence of

the spring elements. Details on the derivation of these equations and the system matrix are
included in Appendix A.
The term dK ¼ H=KL is a dimensionless positive parameter, relating the stiffness of the cable

system (through H and L) to that of the P1–P2 connector. As dK-0 the solution approaches the
behavior discussed in Section 3 (rigid tie); the condition dK-N is representative of two
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disconnected taut-strings (K-0). Typical values of dK were computed, considering examples of
existing cross-tied cable networks; the interval of investigation can be generally defined between
dK ¼ 10�2 (long stays) and dK ¼ 100: Similarly, the ground parameter dG ¼ H=KGL relates the
stiffness of the cable system to the second spring.

4.1. Solution to the twin-cable system without connection to ground

Under the conditions dG-N and f ¼ 1 ðL2 ¼ L1Þ; the matrix S of Eq. (A5) can be simplified;
the characteristic polynomial associated with det½S� ¼ 0 becomes

pðaÞ ¼ fsinðapÞgf½cosðapÞ � 1� � ap dK sinðapÞg ð23aÞ

or

pðaÞ ¼
cosð2apÞ � 1

2

� �
tan

ap
2

� �
þ ap dK

n o
: ð23bÞ

Expression (24a) is immediately recognizable as Eq. (9) of the rigid system, as dK-0: Also
in this case two sets of roots can be identified: pðaÞ ¼ fp‘‘S-B’’gfp‘‘S-A’’g: The first one, denoted by
‘‘S-B’’, is the solution to the left part of Eqs. (24), which represents the set of modes that, in the
twin-cable system, is not influenced by the presence of the vertical connection (i.e., a ¼ k with
k ¼ 1; 2;y;N and no internal force between P1 and P2). These are the modes of the isolated
cable, as discussed in Section 3.1, symmetric (odd values of k—Fig. 2) and antisymmetric
(even-valued, in which the in-phase and out-of-phase solutions can coexist—Fig. 3(a)).
The final expression for the set ‘‘S-A’’, which represents the out-of-phase symmetric class of

modes, modified by the imperfect rigidity, is linked to the solution of the transcendental
expression

Tða; dkÞ ¼ tan
ap
2

� �
þ ap dK ¼ 0: ð24Þ

The general pattern is quite similar to the fundamental equation of cable vibration for elements
with sag: an approximate solution to the equation tanðg=2Þ � g=2 ¼ 0 was found by Rohrs; details
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can be found in Ref. [12]. A numerical algorithm was developed for the iterative solution of
Eq. (24) as a function of the parameter dK :
Fig. 8(a) depicts Eq. (24) for dK ¼ 5:0; 0:5; 0:05; 0; over the interval 1oao5: The roots of

Tða; dkÞ can be divided in two classes: class ‘‘a’’ points, related to the condition dK ¼ 0
(rigid connector with a ¼ 2; 4); class ‘‘b’’ points, for which the solution depends on the spring
stiffness. It is evident from this figure that the frequency values associated with ‘‘b’’ points are
lower than those for dK ¼ 0: A general relative ‘‘down-shift’’ of these solutions towards lower a
can be detected as the modal interval increases (compare b1�3 for 1oao3; and b3�5 for 3oao5).
This tendency becomes much more pronounced in higher modes, in which all roots, for dKa0;
tend to odd-valued frequencies, corresponding to symmetric components of ‘‘S-B’’.
The evolution of the reduced frequencies as a function of dK and related to the 2nd, 4th, 6th and

8th symmetric modes, is presented in Fig. 9(a). Significant modifications of a with respect to a
‘‘disconnected system’’ can be observed for dKo0:3 only. In fact, for higher values of dK ; the
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solutions are almost coincident with the asymptotic behavior for dK-N; with the two cables
vibrating independently. The down-shift property, highlighted in Fig. 11(a), can also be seen.
In Fig. 10 the modal components, YrðxrÞ; for a high, an intermediate and a low value of dK have

been computed for the 2nd (2S) and the 4th (4S) symmetric modes. The 1st and 3rd symmetric
are unaffected (Fig. 2). The variation of separation among the four segments at mid-span (Fig. 10)
is a measure, in normalized form, of the relative displacement (A1) between the two cables,
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i.e., the elongation or contraction of the spring element. As the stiffness of the spring increases,
with respect to cable characteristics, the relative distance between points P1 and P2 decreases.
In particular for dK ¼ 0:5; the efficiency of the connection is so poor that the modal shape
(and frequency) is essentially the same as the odd-numbered symmetric modes (i.e., for example,
mode 2S is almost coincident with 1S). For higher modes, forces induced on the restrainer are
more relevant and the relative displacements become larger (previously interpreted in terms of
reduced frequencies and the ‘‘down-shift’’ effect of ‘‘b’’ points in Fig. 8(a)).

4.2. Solution to the symmetric cable system (L1aL2) without connection to ground

Under the conditions dG-N but fa1; the polynomial associated with system (A5) becomes

pðaÞ ¼ cos
apð1þ f Þ

2

� �
� cos

apð1� f Þ
2

� �� �


 sin
apð1þ f Þ

2

� �
þ ap dK cos

apð1þ f Þ
2

� �
þ ap dK cos

apð1� f Þ
2

� �� �
; ð25Þ

where two sets of roots are identified: pðaÞ ¼ f p‘‘S-B’’gf p‘‘S-A’’g: The solution to p‘‘S-B’’ ¼ 0
relates to the complete set of antisymmetric modes, independent of the normalized stiffness, also
coincident with the case of the two isolated cables, in which no force is exerted by the vertical
connector (see also Eq. (19)). The interesting set, identified as ‘‘S-A’’, can be equivalently rewritten
as

p‘‘S-A’’ðaÞ ¼ cos
apð1þ f Þ

2

� �
� cos

apð1� f Þ
2

� �� �
0:5 tan

ap f

2

� �
þ 0:5 tan

ap
2

� �
þ ap dK

� �
ð26Þ

with p‘‘S-A’’ðaÞ ¼ f p‘‘S-A1’’gf p‘‘S-A2’’g: It can be shown that the solutions to p‘‘S-A1’’ ¼ 0 are the
same as those to p‘‘S-B’’ ¼ 0; on the contrary p‘‘S-A2’’ is related to the class of modes equivalent to
Eqs. (21) and (22) for dK ¼ 0: In this case, the transcendental expression, *Tða; dk; f Þ; similar to
Eq. (24) for f ¼ 1; becomes

*Tða; dk; f Þ ¼ 0:5 tan
ap f

2

� �
þ 0:5 tan

ap
2

� �
þ ap dK ¼ 0: ð27Þ

Fig. 8(b) depicts the general behavior of these roots, for different values of dKa0 in the interval
1oao5 and a system with f ¼ L2=L ¼ 0:8 ðe ¼ 0:25Þ:
In the figure class ‘‘a’’ and ‘‘a0’’ points are coincident with the rigid-connector case. There are

two solutions between the vertical asymptotes corresponding to odd values of a ¼ 1; 3; 5;
associated with modes denoted by a solid thin line in Fig. 6. New asymptotes can be observed
among these intervals, linked to the vanishing of Eq. (27). However, it can be also observed from
the analysis of Fig. 6 that, as f decreases, this tendency disappears beyond the cross-over points of
multiple solutions.
Therefore, there will be two possible solutions also for dKa0 (class ‘‘b’’ and ‘‘b0’’ points). A new

property is also evident, in addition to the already mentioned frequency down-shift for higher
modes (b1�3 for 1oao3; and b3�5 for 3oao5). The relative position of the new asymptotes,
corresponding to the solution of antisymmetric modes in which only the shorter cable is excited
(Eq. (22)), tends to get closer to the upper frequency limit as the mode number increases. As a
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result, a relative increment in the frequency can be detected, as for example between b
0

1�3 for
1oao3 and b

0

3�5 for 3oao5:
Fig. 9(b) presents, as an example, the evolution of the reduced frequency a; numerically

determined through Eq. (27) as a function of dK for a symmetric system with f ¼ 0:80; equivalent
to Fig. 9(a). All symmetric modes (1st to 7th) are affected by dK ; due to the loss of perfect
similarity between the taut-cables (through f ), in contrast to the previous case. It also reveals that
the frequency increment of the system with respect to the single cable solution is higher (only for
even-numbered symmetric modes–out of phase), due to the general trend of ‘‘b’’ and ‘‘b0’’ points.
In Fig. 11 the modal components, YrðxrÞ; for f ¼ 0:8 ðe ¼ 0:25Þ and a high, an intermediate and

a low value of dK ; have been computed for the 1st (1S, in-phase) and the 2nd (2S, out-of-phase)
symmetric modes, determined by the roots of the polynomial depicted in Fig. 8(b). By comparison
of these modes with the equivalent behavior for twin cables ð f ¼ 1Þ; described in Fig. 10, the lack
of symmetry among modal amplitudes is more evident for high values of the normalized stiffness
(a ‘‘soft’’ system).

5. Solution to symmetric-cable system ðL2aL1Þ with connection to ground

In this generalized case the full matrix (A5) must be considered (L2aL1; dK and dG finite). The
characteristic polynomial can be divided in two parts, pðaÞ ¼ f p‘‘S-B’’gf p‘‘S-A’’g; i.e.,

p‘‘S-B’’ðaÞ ¼ fcos½ap ð1þ f Þ� � cos½apð1� f Þ�g; ð28aÞ

p‘‘S-A’’ðaÞ ¼ 0:25 tan
a f p
2

� �
þ tan

ap
2

� �
þ 2ap dK

� ��

þ
dK

dG

tan
ap
2

� �
þ

1

2ap dG

tan
ap
2

� �
tan

a f p
2

� �� ��
: ð28bÞ

As before, the solution to p‘‘S-B’’ ¼ 0 is related to the complete set of antisymmetric modes,
independent both of dK and dG in which no force is exerted by both vertical connectors and
coincident with the case of the two isolated cables.
The interesting set, labeled ‘‘S-A’’ and associated with the symmetric modes, is related to the

solution of a transcendental equation, similar to that previously defined in the case with no
restrainer to ground (Eq. (26)), with an additional factor due to the extension of the cross-tie to
ground. A mapping of solutions to p‘‘S-A’’ ¼ 0 was computed, by simultaneously varying f ; dK

and the ground parameter dG: Fig. 12 summarizes the solutions to Eq. (28b) for f ¼ 0:80
(constant), with variables 0:01odKo1 and dG (between dG ¼ 10dK and dG ¼ 0:01dK ) in the
interval 1oao5:
The first analyzed case corresponds to the condition dG ¼ dK (equal stiffness, Fig. 12(b)).

Vertical asymptotes represent the solution associated with the symmetric modes of the two
individual cables a ¼ 1; 3 and a ¼ 1=f ; 3=f : For a central connector sufficiently rigid ðdK ¼ 0:01Þ;
the presence of ground restrainer increases the frequency (upward shifting) for 3oao3=f and
3=foao5 (higher modes), as indicated by nodes a and a0: Depending on dK (and, consequently,
dG) more than one solution can exist among the asymptotes (e.g., a-type points for 1=foao3 in
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Fig. 12(b)). Nevertheless, this behavior tends to disappear at higher a or higher dK (flexible
connection and points b).
For dG ¼ 0:1dK (Fig. 12(c)) the stiffness of the ground connector is considerably higher than

that of the internal tie; both a and b solutions are present among asymptotes. In particular, points
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a correspond to a case in which the connection to ground ðP2Þ can be considered as an almost
fixed point (compared to the flexibility of the internal system, through dK ). The upper solution ðaÞ
in the interval 1=foao3 tends to a ¼ 2=f ¼ 2:5; with the upper cable at rest and symmetric
eigenfunctions associated with the lower cable with wavelength equal to L2=2 (qualitatively
similar to Fig. 3(b)). On the contrary the lower solution a in the same interval tends to a similar
mode with a ¼ 2 in which the situation is reversed.
In case dG ¼ 10dK (Fig. 12(a)) the link to ground is relatively more flexible. At higher modes the

solution is almost coincident with the case in which no ground connection is present (Fig. 8(b)) as
in points a; a0 and b; b0: In addition, for 1=foao3 and high values of dK the two cables are almost
disconnected from each other, i.e., isolated. For low dK ; since the internal restrainer is still
‘‘active’’, a hybrid solution is detected (points c): the limit behavior is characterized by a mode in
which the modal amplitude of each element is similar (in phase—smaller c solution; out of
phase—larger c solution).
Fig. 13 presents the modal eigenfunctions associated with the 1st (1S, in-phase) and 2nd (2S, out-

of-phase) symmetric modes, for a non-rigid symmetric-cable system, elastically restrained to ground,
with cable length ratio f ¼ 0:8 and a constant value of dK ¼ 0:25; by varying the ground parameter
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dG as a function of dK : It is worth observing that when the stiffness of the spring to ground is
relatively high ðdG ¼ 0:1dK Þ; the localized response of one single cable at a time is emphasized: the
amplitude is increased or largely reduced on either cable, according to the frequency.
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Fig. 13. Non-rigid symmetric-cable system ( f ¼ 0:80 and dK ¼ 0:25) with connection to ground. Evolution of the Yr

eigenfunctions associated with the 1st and 2nd symmetric modes (1S, 2S), as a function of the ground parameter dG:

(a1) mode 1S, dG ¼ 10dK ¼ 2:50; a ¼ 1:11; (a2) mode 2S, dG ¼ 10 dK ¼ 1:50; a ¼ 1:65; (b1) mode 1S, dG ¼ dK ¼ 0:25;
a ¼ 1:18; (b2) mode 2S, dG ¼ dK ¼ 0:25; a ¼ 1:77; (c1) mode 1S, dG ¼ 0:1 dK ¼ 0:03; a ¼ 1:27; (c2) mode 2S, dG ¼
0:1 dK ¼ 0:03; a ¼ 2:25: Solid lines: Y1; Y2; dashed lines: Y3; Y4:
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Parametric studies on the combined influence of the stiffness parameters dK ; dG and f (cable
length ratio) on the reduced modal frequencies, a ¼ o=o01; were conducted for selected modes.
An increment in the frequency is generally observed, by simultaneously adapting the values of dK

and dG: For the sake of brevity the results are not reported here.

6. Conclusions

An analytical procedure for the assessment of cable network behavior has been implemented in
this paper using taut cable theory. This procedure solves the free-vibration problem of a system of
stays, interconnected by a set of cross-ties. The introduction of transverse elements, usually
adopted as countermeasure to suppress oscillations induced by external actions, has been
investigated, by solving the dynamic equations for a set of simplified examples. From these results
it is evident that even a geometrically simple system can rapidly become complex in terms of
number and type of solutions. A numerical procedure has been developed for the general
assessment of the modal characteristics. These analyses have contributed to the generation of a
study background that has been used in a companion paper [13] for investigations concerning real
systems, including the generalization of the present method and the numerical procedure to large
problems. This approach has been applied to cable network systems of an actual bridge, along with
comparison among different configurations of cross-tied networks, providing observations about
the mitigation of large-amplitude stay vibrations of specific examples towards design applications.
The proposed method is preferred to a finite-element-based numerical analysis of a cable

system, since some of the physical characteristics can be predicted and deduced from the general
theory (interpretation of the results for large systems and comparison with the basic mechanics
associated with simplified examples [13]).
The effectiveness of the proposed method, shown by the examples and in Ref. [13], is another

significant aspect, capable of detecting the presence of multiple eigenvectors in symmetric
networks.
Sensitivity studies, in which the number, the configuration and the location of connectors need

to be almost routinely modified, can be improved through the proposed procedure, since the effort
that is necessary to redefine a network system is much lower than that associated with a finite
element simulation in which a redistribution of the nodes and the elements is required. While not
considered here, the effect of the mass of the cross-tie systems can be readily considered by the
addition of point masses at the connector locations.
The limitations of this approach are connected to the fact that effects of cable geometry (sag)

are neglected as well as local characteristics of the network (e.g., the connection between cable and
restrainer). In addition, the performance of the cross-ties is assumed as symmetric, simulated by
means of simplified linear spring connectors.

Appendix A. Derivation of matrix

In Section 4, the internal compatibility equation (2d) between P1 and P2 is defined in
accordance with the convention and notation as in Fig. 7, by relating the internal force to the
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elongation (or contraction) of the spring with stiffness K ; i.e. FS=K ¼ dP1P2
; or

H1
@y1

@x1

����
x1¼l�

þ
@y2

@x2

����
x2¼L1�l�

 !

K
¼ y3ðx3 ¼ l�Þ � y1ðx1 ¼ l�Þ: ðA:1Þ

The force FS is derived from the equilibrium at P1 on the upper cable, after considering
Eqs. (16) for the Y1;2 and Y3;4 expressions and the following simplifications: o02 ¼ ð1þ eÞo01;
L2pL1; H2 ¼ H1 ¼ H; l� ¼ L1=2 ¼ L=2: Eq. (A.1) can be rewritten as

H

L
ap A1 cos

ap
2

� �
þ A2 cos

ap
2

� �h i
¼ K A3 sin

a f p
2

� �
� A1 sin

ap
2

� �� �
: ðA:2Þ

In the presence of the additional restrainer between P2 and the ground, the force equilibrium
condition (2e) is also modified, by defining as FG ¼ �KGy21ðl�Þ the additional restoring force due
to this element (Fig. 7):

H1
@y1

@x1

����
x1¼l�

þ
@y2

@x2

����
x2¼L1�l�

 !
þ H2

@y3

@x3

����
x3¼l2

þ
@y4

@x4

����
x4¼L2�l2

 !
¼ KGð�y21ðl�ÞÞ: ðA:3Þ

The force FG is derived from the equilibrium of the two-cable system. Similarly, expression
(A.3) can be rewritten as

H

L
ap ðA1 þ A2Þ cos

ap
2

� �
þ ðA3 þ A4Þ cos

a f p
2

� �� �
¼ �KGA3sin

a f p
2

� �
: ðA:4Þ

Matrix (6c) becomes

S ¼

sin b �sin b 0 0

0 0 sinð f bÞ �sinð f bÞ

2 b dKcos bþ sin b 2 b dKcos b �sinð f bÞ 0

cos b cos b cos ð f bÞ þ
sinð f bÞ
2b dG

cos ð f bÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ðA:5Þ

where b ¼ ap=2; dK ¼ H=KL (normalized stiffness), dG ¼ H=KGL (ground parameter) and f is
defined as in Eq. (17b).
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